10.04.2020 15:07

Задача Гохберга - Маркуса для одного класса невыпуклых многоугольников

Задача Гохберга - Маркуса для одного класса невыпуклых многоугольников

Исследовательская задача, рассмотренная в настоящей работе, относится к задачам комбинаторной геометрии.

Покрытие невыпуклого многоугольника его образами при гомотетии с коэффициентами гомотетии, меньшими единицы, относится к такому типу покрытий, когда покрываемая фигура содержится в объединении покрывающих фигур (не равна их объединению).

Невыпуклые многоугольники, которые рассматриваются в настоящей работе, - это многоугольники, границы которых принадлежат n вершин выпуклости и 2m+1 чередующихся вершин выпуклости и невыпуклости.

В задаче требуется найти, каково минимальное число меньших копий, достаточное для покрытия данной фигуры ее образами при гомотетии.

В исследовании приведена серия задач на покрытие и разрезание фигур, которая может быть использована для проведения факультативов для школьников.

Н. Р. Буданов

Задача Гохберга - Маркуса для одного класса невыпуклых многоугольников

Опубликовано 10.04.2020 15:07 | Просмотров: 148 | Блог » RSS


Рекомендуем:
Всего комментариев: 0